
Binghamton

University

CS-220

Spring 2016

Integer Operations
Computer Systems Section 2.1.6-2.1.9,2.3

Binghamton

University

CS-220

Spring 2016

Abstraction

Computers Deal with bits of information

Ones and Zeroes

On and Off

True and False

Binghamton

University

CS-220

Spring 2016

Leaky Abstraction

• Smallest addressable “element” in C is 8 bits!

• “bool” data type (using #include <stdbool.h>)
• Takes 8 bits of storage

• Heavy use of bit-wise “AND” (&) and bit-wise “OR” (|)
• Character masks expressed in hexadecimal, e.g. “0x02”

A B A&B

0 0 0

0 1 0

1 0 0

1 1 1

A B A|B

0 0 0

0 1 1

1 0 1

1 1 1

Binghamton

University

CS-220

Spring 2016

Gate Level Implementation

8 bit bitwise AND

Binghamton

University

CS-220

Spring 2016

Arithmetic Logic Unit (ALU)

ALU

OP1 OP2

RES

OPERATION

Binghamton

University

CS-220

Spring 2016

Arithmetic Logic Unit (ALU)

ALU

OP1

OP2

RES

BITWISE AND

Binghamton

University

CS-220

Spring 2016

Bitwise Operations in C

• AND (&)

• OR (|)

• Exclusive OR (^)

• Not (~)

Binghamton

University

CS-220

Spring 2016

Bit Twiddling Example

• if (x & 0xf0) …

• if ((x | 0x0f)==0xff)
0xf0 = 240

27 26 25 24 23 22 21 20

x7 x6 x5 x4 x3 x2 x1 x0

1 1 1 1 0 0 0 0

x7 x6 x5 x4 0 0 0 0

27 26 25 24 23 22 21 20

x7 x6 x5 x4 x3 x2 x1 x0

0 0 0 0 1 1 1 1

x7 x6 x5 x4 1 1 1 1

1 1 1 1 x x x x

See xmp_bitTwiddling

http://www.cs.binghamton.edu/~tbarten1/CS220_Fall_2015/examples/xmp_bitTwiddling/btw.c

Binghamton

University

CS-220

Spring 2016

Binary Addition

• For example:

1 1 1 1

0 1 1 1 0 0 1 1 115

+ 0 0 1 1 0 0 1 0 + 50

1 0 1 0 0 1 0 1 162

Binghamton

University

CS-220

Spring 2016

Full Adder

𝑆𝑈𝑀 = 𝐴⨁𝐵⨁𝐶
𝐶𝑎𝑟𝑟𝑦𝑂𝑢𝑡 = 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐶𝑎𝑟𝑟𝑦𝐼𝑛 + 𝐵 ⋅ 𝐶𝑎𝑟𝑟𝑦𝐼𝑛

Binghamton

University

CS-220

Spring 2016

Eight Bit Adder

OP1

OP2

RESULT

Binghamton

University

CS-220

Spring 2016

Unsigned vs. Two’s Complement Addition

Addition is Addition

Overflow is Different!

1 1 1 1 1 UNS SGN

0 1 1 1 0 0 1 1 115 115

+ 1 1 1 1 0 0 1 0 +242 + -14

0 1 1 0 0 1 0 1 101
OVFL

101

Binghamton

University

CS-220

Spring 2016

Overflow with Addition

Unsigned

• Carry out of the high order bit

Two’s Complement

• Sign Bit Incorrect…
• POS + POS = NEG or

• NEG + NEG = POS

• Note… Opposite signs never
overflow!

• POS + NEG = No Overflow

Binghamton

University

CS-220

Spring 2016

Binary Subtraction A-B

• Two’s Complement: compute A+(-B)
• Find –B by flipping bits + 1

• A + 1 + (~B)

• Overflow: NEG-POS = POS or POS – NEG = NEG

• Unsigned Subtraction
• A-B… convert A and B to two’s complement, do two’s complement

subtraction, convert result to Unsigned

• A+1+(~B)

• Overflow: A < B

Binghamton

University

CS-220

Spring 2016

Comparison A vs B

• A>B if A-B>0

• A==B if A-B=0

• A<B if A-B<0

• Much easier than ripple…

Binghamton

University

CS-220

Spring 2016

What is “True”?

• When dealing with multiple bits, some are “on” and some are “off”
• e.g. char i=39; /* 0b0010 0111 */

• Is this “true” or “false”?

• Bitwise operations do multiple (column-wise) evaluations
• Is the result of the entire operation “true” or “false”?

• Some columns may evaluate to “true”… some to “false”

• C Logical “Truth”
• By convention, a group of bits is “True” if ANY bit is true (1)!

• Therefore, a group of bits is “False” only if ALL bits are false (0)!

Binghamton

University

CS-220

Spring 2016

Logical “Truth Value”

• Zero is “false”, non-zero is “true”

int x = 10;
while(x) { …; x = x – 1; }
x=10; while(x) { …; x = x – 3; }

if (x & 0x40) { /* If second bit from left is on in X */ … }

if (x && y) { /* If both x and y are non-zero */ … }

if (x & 0xf0) { /* ? */ … }
if ((x | 0x0f) == 0xff) { /* ? */ … }

Binghamton

University

CS-220

Spring 2016

Logical AND (&&)

OP1

OP2

RESULT

0

0

0

0

0

0

Binghamton

University

CS-220

Spring 2016

Bit Shifting

• Shift Left – Same as multiply by two

signed char x=53;

signed char y=x<<1;

• Shift Right – Same as divide by two (almost)

signed char x=53;

signed char y=x>>1;

0 0 1 1 0 1 0 1

0 1 1 0 1 0 1 0

0000….

0 0 1 1 0 1 0 1

0 0 0 1 1 0 1 0

sign

See xmp_shift/shift.c

http://www.cs.binghamton.edu/~tbarten1/CS220_Fall_2015/examples/xmp_shift/

Binghamton

University

CS-220

Spring 2016

Shift Left 1 (Arithmetic)

Binghamton

University

CS-220

Spring 2016

Bit Shifting… Signed vs. Unsigned

• Shift left… no difference – pad on right with 0

• Shift right…
• Signed… pad on left with sign bit

• Unsigned… pad on left with “sign” bit… always 0

• In lower level languages…
• “shift right logical” same as unsigned shift – pad on left with 0

• “shift right arithmetic” same as signed shift – pad on left with sign bit

Binghamton

University

CS-220

Spring 2016

Binary Multiplication / Division

0 0 0 1 0 0 1 0 18

x 0 0 0 0 0 1 1 1 x7

0 0 0 1 0 0 1 0 56

+ 0 0 0 1 0 0 1 0 +70

+ 0 0 0 1 0 0 1 0

0 1 1 1 1 1 1 0 126

ACCUM=0;
FOR (BIT=0; BIT<32; BIT++) {

IF (MULTIPLICAND & (1<<BIT)) ACCUM = ACCUM + MULTIPLIER
MULTIPLIER=MULTIPLIER<<1

}

Binghamton

University

CS-220

Spring 2016

Bit Twiddling

• The fine are of performing neat tricks using bit manipulation,
often in ways that are TOTALLY uncomprehendable

• See: https://en.wikipedia.org/wiki/Bit_manipulation

• For example…

If (x & (x-1)) { /* x is a power of 2 */

…

}

https://en.wikipedia.org/wiki/Bit_manipulation

Binghamton

University

CS-220

Spring 2016

Abstraction

Bits are stored in memory from most significant at left

to least significant at right

(int 100,000 = 0x0001 86A0)
231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0

0 0 0 1 8 6 A 0

Byte m Byte m+1 Byte m+2 Byte m+3

Binghamton

University

CS-220

Spring 2016

Leaky Abstraction – “Endian”-ness

Some machines store as expected… (Big–endian)

Some machines store least significant byte first! (Little-endian)

S 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0

0 0 0 1 8 6 A 0

Byte 42 Byte 43 Byte 44 Byte 45

27 26 25 24 23 22 21 20 215 214 213 212 211 210 29 28 223 222 221 220 219 218 217 216 S 230 229 228 227 226 225 224

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

A 0 8 6 0 1 0 0

Byte 42 Byte 43 Byte 44 Byte 45

Binghamton

University

CS-220

Spring 2016

Why Little Endian?

• Casting:
• int x; /* 32 bits starting at byte 42 */

• y = (short int) x; /* Put the least significant 16 bits from x into y */

00 01 86 A0

42 43 44 45

x

(short int) x

A0 86 01 00

42 43 44 45

x

(short int) x

Binghamton

University

CS-220

Spring 2016

When does Endian-ness Leak?

• Big-endian machine: First byte is the most significant byte
• Everything works as expected

• Until: we get binary data from a little-endian machine

• Little-endian machine: First byte is the least significant byte
• When printing the value of a number, bytes are switched

• We don’t even know if a machine is big-endian or little-endian!

• Until: we get binary data from a big-endian machine OR

• Until we look at the bit representation of the data, not treated as a number

Binghamton

University

CS-220

Spring 2016

Managing Endian-Ness

• Network standard is big-endian

• stdlib functions
• machine representation  network (big-endian) representation

• htons (short) , htonl (long)

• Network representation (big-endian) machine representation
• ntohs (short), ntohl (long)

• No-ops when hardware is big-endian

• endian.h functions
• htobe16, htobe32, htobe64, htole16, htole32, htole64

• be16toh, be32toh, be64toh, le16toh, le32toh, le64toh

See xmp_endian/network.c

http://www.cs.binghamton.edu/~tbarten1/CS220_Fall_2015/examples/xmp_endian/

