Binghamton CS-220

University Spring 2016

Integer Operations

Computer Systems Section 2.1.6-2.1.9,2.3

Binghamton CS-220

University Spring 2016

Abstraction

Computers Deal with bits of information

Ones and Zeroes
On and Off
True and False

Binghamton CS-220

University Spring 2016

Leaky Abstraction

e Smallest addressable “element” in C is 8 bits!

* “bool” data type (using #include <stdbool.h>)
» Takes 8 bits of storage

* Heavy use of bit-wise “AND” (&) and bit-wise “OR” (])

* Character masks expressed in hexadecimal, e.g. “0x02"

A AZB A

>
w
=
w

>

_ =k, O O
=N =N T
_ o O O
_ =, O O
= =
e =)

S \©
o v
S 5
Y
O =
g
a,
N

i ——

liie—
s [ll—L
5 =2
==
5 >
=
£ MIES
] m
L oz
0! 5
> G o)

Binghamton

Universi

Binghamton CS-220

University Spring 2016

Arithmetic Logic Unit (ALU)

g 8
-3

Binghamton CS-220

University Spring 2016

Arithmetic Logic Unit (ALU)

\ i
Z
A 4(
S Z
Z 1

s
—1lllI—

Binghamton CS-220

Spring 2016

University

Bitwise Operations in C

* AND (&)

* OR (])

* Exclusive OR (#)
* Not (~)

Binghamton CS-220

University Spring 2016

Bit Twiddling Example

See xmp bitTwiddling
. if (x & 0xf0) ... | 27 | 26| 25 | 20| 23 | 22] 2t | 20
X7 Xg X Xy X3 X, Xq X

1 1 1 1 0

o if ((x | 0x0f)==0xff)
0xf0 = 240
X7 X Xe X, X3 X, X4 X

0 0 0 0 1 1 1 1

http://www.cs.binghamton.edu/~tbarten1/CS220_Fall_2015/examples/xmp_bitTwiddling/btw.c

Binghamton CS-220

University

Binary Addition

Spring 2016

* For example:

1 1 115
+ 50

o O »
= = P
o O -
o

1
1
0
0

Binghamton CS-220

University Spring 2016

Full Adder

SUM = A@B®DC
CarryOut =A-B+ A-Carryln+ B - Carryln

Carry_In

Binghamton CS-220

University Spring 2016

Eight Bit Adder

o L)
(] —
S

o L)
(] —_
S

o L)
(] —
S

o [}
(] —
sS4

o L)
(] —
S

o [}
(] —
sS4

o L)
(] —
sS4

o [
(] —
S

CS-220

Binghamton
Spring 2016

University

Unsigned vs. Two's Complement Addition

Addition is Addition

UNS SGN
1 1 115 115
0 +242 +-14

101 101
OVFL

O IR =
= =
= =
O i

= 1O O
-l o r
O i
—

Overflow is Different!

Binghamton CS-220

University Spring 2016

Overflow with Addition

Unsigned Two’s Complement

* Carry out of the high order bit < Sign Bit Incorrect...
* POS + POS = NEGor
* NEG + NEG = POS

* Note... Opposite signs never
overflow!

e POS + NEG = No Overflow

Binghamton CS-220

University Spring 2016

Binary Subtraction A-B

* Two’s Complement: compute A+(-B)
* Find -B by flipping bits + 1
*« A+ 1+ (~B)
* Overflow: NEG-POS = POS or POS - NEG = NEG

* Unsigned Subtraction

* A-B... convert A and B to two’s complement, do two’s complement
subtraction, convert result to Unsigned

« A+1+(~B)
e Overflow: A <B

Binghamton CS-220

University Spring 2016

Comparison A vs B

+ A>B if A-B>0 . .
+ A==B if A-B=0 = =
+ A<B if A-B<0 =T

* Much easier than ripple...

vRvAvEvEEURVAY.

Binghamton CS-220

University Spring 2016

Whatis “True”™?

* When dealing with multiple bits, some are “on” and some are “oft”
* e.g.chari=39; /*0b00100111 */
* Is this “true” or “false”?

* Bitwise operations do multiple (column-wise) evaluations
* s the result of the entire operation “true” or “false”?
e Some columns may evaluate to “true”... some to “false”

* C Logical “Truth”
* By convention, a group of bits is “True” if ANYbitis true (1)!
* Therefore, a group of bits is “False” only if ALL bits are false (0)!

Binghamton CS-220

University Spring 2016

Logical “Truth Value”

o Zero is “false” non-zero is “true”
int x = 10;
while(xX) { x =x-1;}
Xx=10; while(x){ x = x-3;}
if (x & O0x40){ /* If second bit from left isonin X */ ... }
if (x && vy){/*If both x and y are non-zero */ ... }

if (x & OxfO){ /*?2*/ ...}
if ((x| OxO0f) ==0OxfH)y{/*?2*/ ...}

Binghamton CS-220

University Spring 2016

Logical AND (&&)

S O ©O O O O

Binghamton CS-220

University Spring 2016
Bit Shifting
* Shift Left - Same as multiply by two o 0000...

signed char xo53; g 4 of od Al ol ol L d

signed char y=x<<1;

%f:*j

* Shift Right — Same as divide by two (almost)

sighed char x=53;

signed char y=x>>1; Slgn\ \ \ \ \ \ \ \ \

See xmp shift/shift.c

http://www.cs.binghamton.edu/~tbarten1/CS220_Fall_2015/examples/xmp_shift/

Binghamton CS-220

University Spring 2016

Shift Left 1 (Arithmetic)

b qf
Ciend I_'Elenlil
b0 0
Clend I_'Elenlil
b0 P 0
Clenl I_'E]enlil
p i m
Clenl I_'E]enlil
P o m
Clenl I_'E]enlil
o 0l m
Ciend Clend
——1 =
Ciend Ll
b0 l P 0
Clenl L2

CS-220
Spring 2016

Binghamton

University

Bit Shifting... Signed vs. Unsigned

* Shift left... no difference - pad on right with 0

e Shift right...
* Signed... pad on left with sign bit
* Unsigned... pad on left with “sign” bit... always 0

* In lower level languages...
 “shiftrightlogical” same as unsigned shift — pad on left with 0
 “shift right arithmetic” same as signed shift - pad on left with sign bit

Binghamton CS-220

University Spring 2016

Binary Multiplication / Division

0 0 0 1 0 0 1 0 18
X 0 0 0 0 0 1 1 1 X7
0 0 0 1 0 0 1 0 56
+ 0 0 1 0 0 1 0 +70
+ 0 0 1 0 0 1 0
0 1 1 1 1 1 1 0 126
ACCUM=0;

FOR (BIT=0; BIT<32; BIT++) {
IF (MULTIPLICAND & (1<<BIT)) ACCUM = ACCUM + MULTIPLIER
MULTIPLIER=MULTIPLIER<<1

Binghamton CS-220

University Spring 2016

Bit Twiddling

* The fine are of performing neat tricks using bit manipulation,
often in ways that are TOTALLY uncomprehendable

* See: https://en.wikipedia.org/wiki/Bit manipulation

* For example...

If (x&(x-1)) {/*xisapower of 2 */

https://en.wikipedia.org/wiki/Bit_manipulation

Binghamton CS-220

University Spring 2016

Abstraction

Bits are stored in memory from most significant at left

to least significant at right
(int 100,000 = 0x0001 86A0)
2 2 2 2 A 2 s R e S R R

.0000000000000011000011010100000

B : ! 8 : : o
pren R T O Byems:

Binghamton CS-220

University Spring 2016

Leaky Abstraction — "Endian”-ness

Some machines store as expected... (Big-endian)

IIWIIWIIIIIWIIIIIIIIIIEEﬂﬂ
........b23 b;; by byg byg big byy byg bys byy byz byy byy byy by bg b; by by b, by b, by by
........000000011000011010100000
BN o !

8 6 A 0

perz [TRV By s

Some machines store least significant bytefirst! (Little-endian)
2323 50 0 2 2 i 22 3 2 8 2 i i
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 bZO b19 b18 b17 b16 b15 b14 b13 b12 b11 blO b9 b8
1010000010000 1100 00 0 0 0 0 1 FONNCHNIONFIOHNNGHNGH 0NN

a0 |

A 0 8 6 0

bye s [aves R

Binghamton CS-220

University Spring 2016

Why Little Endian?

* Casting:
* intx; /* 32 bits starting at byte 42 */
* y = (shortint) x; /* Put the least significant 16 bits from x into y */

00 01 86 A0 A0 86 01 00
42 43 44 45 472 43 44 45

I (shortint) x (shortint) x I

Binghamton CS-220

University Spring 2016

When does Endian-ness Leak?

* Big-endian machine: First byte is the most significant byte
* Everything works as expected
 Until: we get binary data from a little-endian machine

* Little-endian machine: First byte is the least significant byte
* When printing the value of a number, bytes are switched
 We don’t even know if a machine is big-endian or little-endian!
* Until: we get binary data from a big-endian machine OR
* Until we look at the bit representation of the data, not treated as a number

Binghamton CS-220

University Spring 2016

Managing Endian-Ness

* Network standard is big-endian

e stdlib functions

* machine representation - network (big-endian) representation
* htons (short), htonl (long)

* Network representation (big-endian) = machine representation
* ntohs (short), ntohl (long)

* No-ops when hardware is big-endian

* endian.h functions
* htobel16, htobe32, htobe64, htole16, htole32, htole64
 bel6toh, be32toh, be64toh, le16toh, le32toh, le64toh

See xmp_endian/network.c

http://www.cs.binghamton.edu/~tbarten1/CS220_Fall_2015/examples/xmp_endian/

